Supplementary Material for

Statistical data analysis of expiratory droplet mass during talking and prediction of SARS-CoV-2 number concentrations using dispersion models

Hitoshi Kono¹⁾²⁾

1) Professor Emeritus at University of Hyogo, 2) Japan Meteorological Corporation koyubi@sensyu.ne.jp

Contents

S1. Data used for analysis, number of expiratory droplets in different diameter ranges and total mass, during talking

(Table 1, Figure 2)

S2. Dispersion models and parameters

S3-1. Relationship between virus number concentration for each droplet size, $C_{v,d}$ ($n_0 = 10^8 \text{ mL}^{-1}$) and ventilation rate

S3-2. Relationship between droplet mass concentration for each initial size and ventilation rate

S4. Calculation process and data used for analysis

*Calculations from S-1 to S-4 were performed using Microsoft Excel. Then I converted Excel to pdf.

S-1. Data used for analysis, mass of exhaled droplets during talking. (Table 1, Figure 2)

Table 1. Mass of exhaled droplets by droplet size provided by Loudon and Roberts during talking loudly counting from 1 to 100 in 100 seconds. (mg / 100 seconds)

Original data of "Loudon and Roberts"

Loudon and Roberts [6]; Table 2 Numbers of droplet produced by three subjects during talking. R, L, E : subjects; Two experiments per subject (R, L, E); for each experiment the subject counted loudly from 1 to 100.

				n:	Number of	droplets per	experiment	t	
size range d(µm) [*]	diameter d (µm)	n _T : Total number of droplets in 6 experiments	n: Average number of droplets in 6 experiments	R1	R2	LI	L2	E1	E2
2-4	3	460	77	15	134	61	143	46	61
4-8	6	212	35	0	80	15	71	0	46
8-19	11	195	33	120	0	30	0	30	15
19-32	26	600	100	75	90	210	30	120	75
32-71	56	1545	258	210	330	270	135	225	375
71-100	85	2505	418	450	435	420	390	225	585
100-129	114	1860	310	285	375	330	150	225	495
129-157	143	1125	188	240	225	90	135	120	315
157-188	173	525	88	150	60	90	105	30	90
188-217	202	300	50	30	90	60	45	15	60
217-247	232	300	50	15	75	0	45	30	135
247-277	262	135	23	0	0	60	30	15	30
277-321	291	120	20	0	0	0	15	15	90
321-395	350	315	53	0	45	30	30	75	135
395-508	439	180	30	60	15	0	15	0	90
508-657	580	90	15	0	30	0	0	0	60
657-808	734	60	10	0	0	60	0	0	0
808-955	881	15	2.5	0	15	0	0	0	0
955-1103	1029	0	0	0	0	0	0	0	0
1103-1324	1176	0	0	0	0	0	0	0	0
1324-1500	1471	45	7.5	0	0	0	15	0	30
Total		10587	1765	1650	1999	1726	1354	1171	2687

* Size range is calculated by H. Kono from diameter.

reference

6. Loudon RG, Roberts RM (1967). Droplet expulsion from the respiratory tract, Am. Rev. Respir. Dis. 95, 435-442.

Table 1. Mass of exhaled droplets by droplet size during talking loudly counting from 1 to 100 in 100 seconds. (mg / 100 seconds)

Original data of "L & R - IMI"

C.Y. Chao et al.[23]; Table 4 Estimated total expiratory droplet numbers produced during speaking using the measured size profile at 10mm.

size range (µm)	size class d (µm)	expiratory droplet numbers n
2-4	3	191
4-8	6	2972
8-16	12	1018
16-24	20	534
24-32	28	353
32-40	36	181
40-50	45	191
50-75	63	201
75-100	88	141
100-125	113	191
125-150	138	181
150-200	175	191
200-250	225	161
250-500	375	151
500-1000	750	60
1000-2000	1500	0
Total		6717

reference

23. Chao CYH, Wan MP, Morawska L, Johnson GR, Ristovski ZD, Hargreaves M, Mengersen K, Corbett S, Li Y, Xie X, Katoshevski D (2009). Characterization of expiration air jets and droplet size distributions immediately at the mouth opening. J. Aerosol Sci 40(2), 122–133.

Table 1. Mass of exhaled droplets by droplet size during talking loudly counting from 1 to 100 in 100 seconds. (mg / 100 seconds)

Original data of Xie et al.

Xie et al [8]; Table 2 Estimated total number of droplets in different diameter ranges emitted during talking. (M, male subject; F, female subject; the sizes of droplets used the values at sampling positions.

			number of droplets										
size range d (μm)	diameter d (µm)*				no food dye				fo	od dye	foo	d dye with s	ugar
		M1	M2	M3	F1	F2	F3	F4	M1	F1	M1	M3	F1
0-5	2.5	0	0	0	0	0	12	0	0	0	66	92	0
5-10	7.5	0	0	5	0	0	6	7	24	0	303	309	115
10-15	12.5	2	11	24	0	0	0	2	14	0	158	208	138
15-20	17.5	12	35	11	0	9	7	0	165	14	82	108	79
20-25	22.5	14	86	13	7	28	0	4	230	28	87	72	72
25-30	27.5	28	154	7	12	32	0	7	280	43	115	93	43
30-35	32.5	40	187	0	2	58	3	7	345	43	122	86	57
35-40	37.5	65	239	4	0	79	0	0	302	36	72	93	43
40-45	42.5	84	229	0	0	65	2	9	338	50	72	57	43
45-50	47.5	50	246	0	9	65	2	9	259	43	152	86	57
50-75	62.5	271	854	16	57	236	20	31	763	237	230	446	216
75-100	87.5	256	369	7	62	147	7	19	420	159	299	316	180
100-150	125	180	233	7	48	103	29	24	335	100	251	259	161
150-200	175	54	58	2	14	56	6	14	146	28	121	36	28
200-250	225	15	23	0	4	25	2	0	74	21	61	28	53
250-300	275	9	14	2	2	7	2	2	7	7	0	36	7
300-350	325	4	4	2	2	2	2	0	15	0	0	92	30
350-400	375	7	4	0	4	2	0	0	7	0	0	8	0
400-450	425	0	0	0	2	2	0	0	0	0	0	0	0
450-500	475	0	0	0	0	2	0	0	14	0	8	0	0
500-1000	750	0	3	0	0	0	0	0	0	0	14	0	0
1000-1500	1250	0	0	0	0	0	0	0	0	0	0	0	0
Total		1091	2749	100	225	918	100	135	3738	809	2213	2425	1322

* Diameter is calculated by H. Kono from the size range 'd'.

Xie et al. [8] Table 6. Total mass of droplets calculated using measured droplet number and size data during talking counting from 1 to 100.													
no food dye food dye food dye with su									ugar				
		M1	M2	M3	F1	F2	F3	F4	M1	F1	M1	M3	F1
sampling point	mg	0.94	1.41	0.29	0.49	0.97	0.15	0.11	3.23	0.52	3.67	3.56	1.36
mouth origin	mg	1	1.53	0.3	0.5	1.02	0.15	0.12	3.43	0.56	3.8	3.71	1.43

Xie et al.[8] Table 4 Total mass of droplets collected using surgical face mask during talking counting from 1 to 100.

	M1	M2	M3	M4	M5	M6	M7	F1	F2	average(mg)
mode	3.7	41.8	61.3					15.7	1	18.7
mask	5.5							12.3	7.7	

reference 8. Xie X, Li Y, Sun H, Liu L (2009). Exhaled droplets due to talking and coughing, J. R. Soc. Interface 6, S703–S714 (doi:10 1098/rsif.2009.0388.focus)

Table 1. Mass of exhaled droplets by droplet size during talking loudly counting from 1 to 100 in 100 seconds. (mg / 100 seconds)

Original data of Duguid

Duguid [7]; Table 3 Composite size-distribution table for the droplets expelled during speaking

size range d	diameter	number of droplets
(µm)	d (µm)	nonicer of aropieus
1-4	3	14
4-8	6	52
8-16	12	78
16-24	20	40
24-32	28	24
32-40	36	12
40-50	45	6
50-75	63	7
75-100	88	5
100-125	113	4
125-150	138	3
150-200	175	2
200-250	225	1
250-500	375	3
500-1000	750	1
1000-2000	-	0
Approx. total		250

reference

7. Duguid JP (1946). The size and the duration of air-carriage of respiratory droplets and droplet-nuclei, J Hyg (Lond.) 44, 471–479.

S2. Dispersion models and the parameters

EPA HIWAY-2 model [35]

The dispersion parameters σ_{ya} and σ_{za} for the EPA HIWAY-2 model [35] are given in

$$\sigma_{za} = ax^b \tag{1}$$

The values of "*a*" and "*b*" are used to compute $\sigma_{za}(m)$

stability regime	а	b
Unstable	0.18	0.93198
Neutral	0.15	0.92332
Stable	0.11	0.91465

The formulae and constant used to compute σ_{ya} are

$$\sigma_{ya} = 0.4651x \, tan\theta_p \tag{2}$$

where: x is the downwind distance from the source to the receptor in meters and θ_p is the half angle of the horizontal plume spread, in degrees

$$\theta_p = c - d \ln(x/x_0)$$
(3)
$$x_0 = 1000 m$$

The following values of "c" and "d" are used to compute, θp

stability regime	с	d
Unstable	18.333	1.8096
Neutral	14.333	1.7706
Stable	12.5	1.0857

OML model [36]

The OML model uses the following equations to calculate σ_{ya} and σ_{za} from the ground level source under neutral atmospheric conditions.

$$\sigma_{ya} = u_* t = u_* \frac{x}{U} \tag{4}$$

$$\sigma_{za} = \{1.2u_*^2 \exp(-0.6)\}^{0.5} t = 0.81u_* t = 0.81u_* \frac{x}{U}$$
(5)

where: $u_* =$ friction velocity in m s⁻¹ t = travel time in s x = downwind distance in m U = wind speed in m s⁻¹

The value of u_* is computed using the logarithmic law.

$$\frac{U}{u_*} = \frac{1}{k} \ln \frac{z}{z_0} \tag{6}$$

where: k = 0.4 (von Karman constant) $z_0 = 1$ m (surface roughness) z = height above the ground in m

When the wind speed at 1.5 m in height is 1 m s^{-1} , the wind speed at 50 m in height is estimated using a power law.

$$\frac{U}{U_1} = \left(\frac{z}{z_1}\right)^p \tag{7}$$

where: U = wind speed at z m in height

 U_1 = wind speed at z_1 m in height

p = 0.3 ($z_0 = 1$ m in urban areas under neutral atmospheric conditions) [46]

Since 50 m is the central height of the surface layer, it is regarded as the reference height. Using the logarithmic law, u * is calculated given the surface roughness and U at 50 m in height.

OMG volume-source model [37, 38]

$$C = \frac{N_{v,gen}}{4\pi} \sqrt{\frac{(m+1)(n+1)}{K_y K_z x^2}} exp\left\{-\frac{u(m+1)y^2}{4K_y x}\right\}$$
$$\times \left[exp\left\{-\frac{u(n+1)(z-h)^2}{4K_z x}\right\} + exp\left\{-\frac{u(n+1)(z+h)^2}{4K_z x}\right\}\right]$$
(8)

$$K_{y} = \left(\frac{\sigma_{v}^{2}}{u}\right) x^{0.86} \tag{9}$$

$$K_z = k_2(x/L) = \alpha^2(\sigma_w/u)x\sigma_w \tag{10}$$

$$k_2 = B \times u \tag{11}$$

where: $C = \text{concentration} (\text{m}^{-3})$

(x, y, z) = coordinate of receptor (m) h = point source release height (m) $N_{v,gen} = \text{emission rate of virus (s⁻¹)}$ $K_y, K_z = \text{eddy diffusivities in y and z directions (m² s⁻¹)}$ $k_1, k_2 = \text{eddy diffusivities in y and z directions at <math>x = L \text{ (m² s⁻¹)}$ L = scaling parameter (10 m)m = 0.86, n = 1

The following is a summary of the eddy diffusivity parameters above buildings (1-h values):

		Kz	K	(y	
wind speed	α	В	k2	σ _v /u	σ _v /u
$(m s^{-1})$	all	≥ 1	< 1	≥ 1	< 1
Unstable	1.1	0.76	1.6	0.59	
Neutral	0.81	0.27	0.33	0.43	0.56 u ^{-0.82}
Stable	0.55	0.17	0.31	0.39	

In the OMG model, the relationship between the eddy diffusivities and σ_{ya} and σ_{za} is given by the following equations.

$$\sigma_{y} = \left\{ \frac{\frac{2k_{1}}{10^{0.86}} x^{1.86}}{1.86U} \right\}^{0.5}$$
(12)
$$\sigma_{z} = \left\{ \frac{\frac{2k_{2}}{10} x^{2}}{2U} \right\}^{0.5}$$
(13)

References

35. Petersen WB, User's Guide for HIWAY-2, A Highway air pollution model, 1–69, US EPA, EPA-600/8-80-018 May 1980.

36. Berkowicz R, Olesen HR, Torp U (1986). The Danish Gaussian air pollution model (OML):

Description, test and sensitivity analysis in view of regulatory applications, Air Pollution Modeling and its Application V., 453-481, De Wispelaere C, Schiermeier, FA, Gillani, NV (eds.), Springer, Boston MA.

37. Kono H, Ito S (1990). A micro-scale dispersion model for motor vehicle exhaust gas in urban areas-OMG volume-source dispersion model, Atmospheric Environment **24B**(2), 243–251.

38. Kono H Ito S (1990). A comparison of concentration estimates by the OMG volume-source dispersion model with three line source dispersion models, Atmospheric Environment 24B(2), 253–260.

46. Adachi T (1981), Basic Study of Estimation Method of Wind Speed below 150m by Power Law, Tenki 28(4), 244–252, Table 2 (in Japanese).

(https://www.metsoc.jp/tenki/pdf/1981/1981_04_0244.pdf)

S3-1. Relationship between virus number concentration for each droplet size, $C_{\nu,d}$ ($n_0 = 10^8 \text{ mL}^{-1}$) and ventilation rate

The droplet size d_0 is the initial one before shrinkage.

•

S3-2 - Relationship between droplet mass concentration for each initial size, $C_{m,d}$ and ventilation rate The droplet size d_0 is the initial one before shrinkage.

The mass concentrations $C_{m,d}$ (mg m⁻³) of droplets floating in the room are expressed by the following equation (1), where *d* is the diameter of the droplets. Note that *d* is the diameter after shrinkage to 27% of the initial diameter due to evaporation immediately after release. Let the total mass of the suspended droplet size *d* be m_d (mg), so $C_{m,d} = m_d / V_r$ where $V_r = 700 \text{ m}^3$ is the volume of the room. Let the mass of droplets released in conversation be

 $m_{d0, gen} (\text{mg s}^{-1})$. The emitted droplet diameter $d_0 (\mu \text{m})$ is the diameter before shrink. The mass concentration is

$$\frac{dC_{m,d}}{dt} = m_{d0, gen} / V_r - \{\kappa + (T_{AC})^{-1}\} C_{m,d}$$
(1)

where κ is the gravitational settling rate [s⁻¹] and T_{AC} is the air change time, with

 $T_{AC} = 1 / ACH. ACH$ is the air change per hour. $(T_{AC})^{-1} = V / V_r$, where $V (\text{m}^3 \text{ s}^{-1})$ is the ventilation volume of the room.

Supplementary material 4: Calculation process and data used for analysis

<Figure 1 and Table 1>

Figure 1 Terminal velocity of droplets, U (cm s⁻¹)

d(µm)	r(µm)	U(cm/s)	Re=Ud/v
0.2	0.1	1.20E-04	1.60E-08
2	1	1.20E-02	1.60E-05
4	2	4.81E-02	1.28E-04
6	3	1.08E-01	4.33E-04
10	5	3.01E-01	2.01E-03
20	10	1.20E+00	1.60E-02
40	20	4.81E+00	1.28E-01
60	30	1.08E+01	4.33E-01
80	40	19.5	1.04E+00
100	50	23.3	1.55E+00
200	100	38.6	5.14E+00

* iterative method for solving a system of nonlinear equations of (4), (7) and (6).

C_D=24/Re

Empirical formula

		²
C	24	1
$C_D = c$	$\sqrt{\frac{Re}{Re}}$ + 0.5407	Ś
	('	/

A = π r² is the projected area of the sphere, and ρ_a is the air density.

ρ_a =1.205 kg m ⁻³ 20°C	$\rho_m = 1 \times 10^3 \text{kg m}^{-3}$
μ = 1.813 × 10 ⁻⁵ Nm ² s ⁻¹ 20°C	$v = 1.50 \times 10^{-5} (m^2 s^{-1}) 20^{\circ} C$

(6) [17]

initial diameter d ₀ (μm)	final diameter d _f (μm) RH = 0 - 0.6	evaporation time (s) **	vt (m s ⁻¹)	setting time t =1.5/ vt (s)	time ratio to 1 hour (TR)	d _o range (μm)	release rate of initial droplet mass (mg s ⁻¹)
100	27	15-20	* 0.022	69	0.019	75-100	4.9E-04
70	19	10	0.0107	140	0.039	50-75	2.6E-04
50	14	5	0.0055	274	0.076	40-50	9.1E-05
40	11	3.3	0.0035	428	0.12	32-40	4.4E-05
30	8.1	1.6	0.00197	760	0.21	24-32	4.1E-05
20	5.4	0.7	0.00088	1710	0.48	16-24	2.2E-05
12	3.2	0.2	0.00032	4750	1	8-16	9.2E-06
6	1.6	0.1	0.000079	19001	1	< 8	3.4E-06
						total	0.00096
			[*] initial diame	ter			

^{**} Olibeira Fig. 7a (low protein, RH = 0.6)

<Table 1 Interval estimation>

Mass of exhaled droplets by droplet size during talking loudly counting from 1 to 100 in 100 seconds. (mg / 100 seconds) Table 1

	author	methods	Statistical parameters	total mass	diameter 2∼150 µm	diameter 2∼130 µm	diameter 2∼100 µm	diameter 2 ∼ 75 μm	ratio <150μm to <100μm	ratio <130μm to <100μm	ratio <75µm to <100µm	sample size n		
			mean	21.4	0.69	0.40	0.159	0.025	4.3	2.5	0.15			
(1)	L and R [6]	impaction	σ _{n-1}	6.4	0.25	0.131	0.042	0.0081	-	-	-	6		
			C.V.(%)	30	36	33	27	33	-	-				
(1a)	correction the to the data w	e data in (1) ithout dye	mean	5.1	0.30	0.176	0.076	0.0128	4.0	2.3	0.17	6		
(1b)	L & R-IMI [23]	corrected by IMI	mean	19.4	0.48	0.24	0.096	0.047	5.0	2.5	0.49	6		
(1c)	correction th to the data	e data in (1b) without dye	mean	4.7	0.21	0.105	0.046	0.024	4.6	2.3	0.53	6		
(2)	Duguid [7]	solid impaction	mean	0.33	0.0108	0.0067	0.0037	0.00199	2.9	1.8	0.53	10-22		
		solid	mean	0.61	0.170		0.079	0.035	2.2	-	0.45			
(3)	(3)	impaction	σ _{n-1}	0.64	0.187	-	0.099	0.051	-	-	-	7		
		without dye	C.V.(%)	104	110	-	126	146	-	-	-			
		solid impaction with dve	solid impaction with dve	solid	mean	2.44	0.39	-	0.163	0.067	2.4	-	0.41	
(4)	Xie [8]			σ _{n-1}	1.44	0.171	-	0.081	0.046	-	-		5	
		with dye	C.V.(%)	59	44	-	49	68	-	-	-			
			mean	18.7	18.7	-	-	-	-	-	-	-		
(5)		mask	σ _{n-1}	21.5	-	-	-	-	-	-	-	8		
			C.V.(%)	115	-	-	-	-	-	-	-			
			mean	-	0.23 (1)*	-	0.078 (1) *	0.035**	2.9	-	0.45**			
(1a)+(3)	mean ^{(*) (**)}	95% confid polulati	95% confidence interval of the polulation mean (ratio)		0.14~0.33 (0.59~1.4)	-	0.036~0.12 (0.47~1.5)		-	-	-	13		
			σ_{n-1}	-	0.158	-	0.069	-	-	-	-			
	(1)+(4)		mean	-	0.55 (1)	-	0.161 (1)	0.044 (1)	3.4	-	-			
			95 % confidence interval of the polulation mean (ratio)			-	0.12~0.20 (0.76~1.24)	0.019~0.068 (0.44~1.56)	-	-	-	11		
			σ_{n-1}	-	0.26	-	0.059	0.037	-	-	-			

Table 1 Interval estimation

95% confidence interval of the polulation mean

	xie without dye			L & R + Xie	with dye		L & R+Xie without dye						
	<100µm	<150µm)μm <100μm <75μm <				< 150µm <100µm				<75µm		
mean	0.079	0.55		0.16	1	0.044	1	0.231		0.078	1	0.035	1.000
σn-1	0.099	0.26		0.059		0.037		0.158		0.069			
C.V.(%)	126	47		37		84		68		89			
n	7	11		11		11		13		13			
tα=0.05	2.37	2.2		2.20		2.20		2.16		2.16			
t _a ×σ _{n-1} / √n	0.089	0.17		0.039		0.024		0.095		0.041			
lower limit	-0.010	0.38	0.69	0.12	0.76	0.019	0.44	0.14	0.59	0.036	0.47		
upper limit	0.17	0.72	1.31	0.20	1.24	0.068	1.56	0.33	1.41	0.12	1.53		

The data of Xie et al (table 2)[8] does not divide the size range by 130 µm and is 100-150 µm, so 130 µm or less is not calculated.

* average of (1a) and (3). ** Geometric mean of mass ratio of 75 μ m or less to 100 μ m or less of (1b), (3) and (4). $\sigma_{n:i}$: standard deviation, C.V.: coefficient of variation

<Original data for Figure 2>

C.Y. Chao et al. 2009, Table 4 [23]

				00011110100	101 2003		
size range (μm)	size class d (µm)	V(cm ³) volume of droplet sphere	numbers of droplets	cummurative V(cm ³) by droplet size	Below this droplet size Cumulative V (mg)	Cumulative volume ratio below this droplet size to cumulative volume below 100 µm	Cumulative volume ratio below this droplet size to cumulative volume below 75 µm
2-4	3	1.41E-11	191	2.70E-09			
4-8	6	1.13E-10	2972	3.36E-07			
8-16	12	9.04E-10	1018	9.21E-07	1.26E-03	1.31E-02	2.69E-02
16-24	20	4.19E-09	534	2.24E-06	3.49E-03	3.63E-02	7.47E-02
24-32	28	1.15E-08	353	4.06E-06	7.55E-03	7.85E-02	1.61E-01
32-40	36	2.44E-08	181	4.42E-06	1.20E-02	1.24E-01	2.56E-01
40-50	45	4.77E-08	191	9.11E-06	2.11E-02	2.19E-01	4.51E-01
50-75	62.5	1.28E-07	201	2.57E-05	4.68E-02	4.86E-01	1.00E+00
75-100	87.5	3.51E-07	141	4.94E-05	9.62E-02	1.00E+00	
100-125	112.5	7.45E-07	191	1.42E-04	2.39E-01		
125-150	137.5	1.36E-06	181	2.46E-04	4.84E-01		
150-200	175	2.80E-06	191	5.36E-04	1.02E+00		
200-250	225	5.96E-06	161	9.60E-04	1.98E+00		
250-500	375	2.75977E-05	151	4.17E-03	6.14E+00		
500-1000	750	0.00022	60	1.32E-02	1.94E+01		
1000-2000	1500	0.00177		0.00E+00	1.94E+01		
	total	0.0020	6717	0.0194			
			19.39				
				1.045.01			

Loudon and Roberts Table 2 Numbers of droplet produced by three subjects during talking. [6]

original			count one to 100 f	or 100 s			
size rage	size range	size class	n	n			
size range d(µm) d(µm) d(µ		d (µm)	total numbers of droplets for six experiments	average number of droplets in 6 experiments	V(cm ³) volume of droplet sphere	cummurative volume (cm ³) by droplet size	Below this droplet size Cumulative mass (mg)
2-4	2-4	3	460	77	1.41E-11	1.08E-09	
4-8	4-8	6	212	35	1.13E-10	3.99E-09	
8-16	8-19	11	195	33	6.97E-10	2.26E-08	
23-45	19-32	26	600	100	9.20E-09	9.20E-07	
45-75	32-71	56	1545	258	9.19E-08	2.37E-05	2.46E-02
75-105	71-100	85	2505	418	3.21E-07	1.34E-04	1.59E-01
105-135	100-129	114	1860	310	7.75E-07	2.40E-04	
135-165	129-157	143	1125	188	1.53E-06	2.87E-04	
164-195	157-188	173	525	88	2.71E-06	2.37E-04	
195-225	188-217	202	300	50	4.31E-06	2.16E-04	
225-255	217-247	232	300	50	6.53E-06	3.27E-04	
255-285	247-277	262	135	23	9.41E-06	2.12E-04	
285-330	277-321	291	120	20	1.29E-05	2.58E-04	
330-405	321-395	350	315	53	2.24E-05	1.18E-03	
405-525	395-508	439	180	30	4.43E-05	1.33E-03	
525-675	508-657	580	90	15	1.02E-04	1.53E-03	
675-825	657-808	734	60	10	2.07E-04	2.07E-03	
825-975	808-955	881	15	2.5	3.58E-04	8.95E-04	
975-1125	955-1103	1029	0	0	5.70E-04	0.00E+00	
1125-1350	1103-1324	1176	0	0	8.51E-04	0.00E+00	
1350-1500	1324-1500	1471	45	7.5	1.67E-03	1.25E-02	
		dendard .	105.07	1705	2.005.02	2.145.02	
		totai	10587	1/65	3.86E-U3	2.14E-02	
		-				2.14E+01	

Duguid Table 3 [7]

	Duguid Table 3	[7]				
		count one to 1	100 for 100 s			
size range	size class					
d(µm)	d (µm)	one experiment	V(cm3) volume of droplet sphere	cummurative volume (cm3) by droplet size	Below this droplet size Cumulative V (cm3)	Below this droplet size Cumulative V (mg)
1.4	2	12	1 415 11	1 845 10		
1-4	5	13 E2	1.410-11	5 895 00		
8-16	12	78	9.04F-10	7.055-08		
16-24	20	40	4 19F-09	1.675-07		
24-32	28	24	1.15E-08	2.76E-07		
32-40	36	12	2 44F-08	2 93E-07		
40-50	45	6	4 77E-08	2.86E-07		
50-75	62.5	7	1.28E-07	8.94E-07	1.99E-06	1.99E-03
75-100	87.5	5	3.51E-07	1.75E-06	3.75E-06	3.75E-03
100-125	112.5	4	7.45E-07	2.98E-06	6.73E-06	6.73E-03
125-150	137.5	3	1.36E-06	4.08E-06	1.08E-05	1.08E-02
150-200	175	2	2.80E-06	5.61E-06		
200-250	225	1	5.96E-06	5.96E-06		
250-500	375	3	2.76E-05	8.28E-05		
500-1000	750	1	2.21E-04	2.21E-04		
	total	251		2 265 04		
	totai	Z31		2 265 01		
		Table 5		3.20E-U1		

neter ranges emitted during talking .

Xie et al [8].	Table 2

	Xie et al [8].		Table 2	Estimated total	number of droplets in differ	ent dia
Xie						
size range diameter (μm)	diameter	V(cm3) volume of droplet sphere	ave. of no food dye	ave. of food dye and food dye with sugar		
μm	μm	ave.				
0-5	2.5	8.18E-12	1.40E-11	2.58E-10		
5-10	7.5	2.21E-10	5.68E-10	3.32E-08		
10-15	12.5	1.02E-09	5.69E-09	1.06E-07		
15-20	17.5	2.80E-09	2.97E-08	2.51E-07		
20-25	22.5	5.96E-09	1.29E-07	5.83E-07		
25-30	27.5	1.09E-08	3.73E-07	1.25E-06		
30-35	32.5	1.80E-08	7.62E-07	2.35E-06		
35-40	37.5	2.76E-08	1.53E-06	3.01E-06		
40-45	42.5	4.02E-08	2.23E-06	4.50E-06		
45-50	47.5	5.61E-08	3.05E-06	6.70E-06		
50-75	62.5	1.28E-07	2.71E-05	4.83E-05		
75-100	87.5	3.51E-07	4.34E-05	9.63E-05		
100-150	125	1.02E-06	9.11E-05	2.26E-04		
150-200	175	2.80E-06	8.17E-05	2.01E-04		
200-250	225	5.96E-06	5.88E-05	2.83E-04		
250-300	275	1.09E-05	5.91E-05	1.24E-04		
300-350	325	1.80E-05	4.11E-05	4.92E-04		
350-400	375	2.76E-05	6.70E-05	8.28E-05		
400-450	425	4.02E-05	2.30E-05	0.00E+00		
450-500	475	5.61E-05	1.60E-05	2.47E-04		
500-1000	750	2.21E-04	9.46E-05	6.18E-04		
1000-1500	1250	1.02E-03	0.00E+00	0.00E+00		
total			6.11E-04			

Figure 2 Cumulative volume distribution by size of droplets released during talking. Loudon and Roberts (L & R), L & R corrected by Chao using IMI, Duguid,Xie (with dye), Xie(without dye)

<Original data of "Loudon and Roberts" in Table 1>

Table 1 Mass of exhaled droplets by droplet size provided by Loudon and Roberts during talking loudly counting from 1 to 100 in 100 seconds. (mg / 100 seconds)

Loudon and Roberts [6] 1967 Table 2 Numbers of droplets produced by three subjects during talking. count from 1 to 100 in 100 s

R, L, E : subjects Two experiments per subject(R, L, E).

	diameter						n: Num	ber of drop	lets per exp	periment					V×n (cm) : cummula	tive volume	e by droplet s	size	average of six experiments			
size range d(μm)	size class d (μm)	V(cm ³): Volume of droplet sphere	n _T : Total number of droplets in 6 experiments	n: Average number of droplets in 6 experiments	V×n (cm³	R1	R2	L1	L2	E1	E2	average		VR1	VR2	VL1	VL2	VE1	VE2	cummulative volume (cm ³) by droplet size	Below this droplet size Cumulative volume (cm ³)	Cumulative volume ratio below this droplet size to cumulative volume below 100 um	Cumulative volume ratio below this droplet size to cumulative volume below 75 um
2-4	3	1.41E-11	460	77	1.08E-0	15	134	61	143	46	61	77		2.12E-10	1.89E-09	8.62E-10	2.02E-09	6.50E-10	8.62E-10	1.08E-09	1.08E-09	6.82E-06	4.40E-05
4-8	6	1.13E-10	212	35	3.99E-0)	80	15	71		46	53		0.00E+00	9.04E-09	1.70E-09	8.03E-09	0.00E+00	5.20E-09	3.99E-09	5.08E-09	3.20E-05	2.06E-04
8-19	11	6.97E-10	195	33	2.26E-0	3 120		30		30	15	49		8.36E-08	0.00E+00	2.09E-08	0.00E+00	2.09E-08	1.04E-08	2.26E-08	2.77E-08	1.75E-04	1.13E-03
19-32	26	9.20E-09	600	100	9.20E-0	7 75	90	210	30	120	75	100		6.90E-07	8.28E-07	1.93E-06	2.76E-07	1.10E-06	6.90E-07	9.20E-07	9.48E-07	5.97E-03	3.85E-02
32-71	56	9.19E-08	1545	258	2.37E-0	5 210	330	270	135	225	375	258		1.93E-05	3.03E-05	2.48E-05	1.24E-05	2.07E-05	3.45E-05	2.37E-05	2.46E-05	1.55E-01	1.00E+00
71-100	85	3.21E-07	2505	418	1.34E-04	450	435	420	390	225	5 585	418		1.45E-04	1.40E-04	1.35E-04	1.25E-04	7.23E-05	1.88E-04	1.34E-04	1.59E-04	1.00E+00	
100-129	114	7.75E-07	1860	310	2.40E-04	285	375	330	150	225	5 495	310		2.21E-04	2.91E-04	2.56E-04	1.16E-04	1.74E-04	3.84E-04	2.40E-04	3.99E-04		
129-157	143	1.53E-06	1125	188	2.87E-0	240	225	90	135	120	315	188		3.67E-04	3.44E-04	1.38E-04	2.07E-04	1.84E-04	4.82E-04	2.87E-04	6.86E-04		
157-188	173	2.71E-06	525	88	2.37E-0	150	60	90	105	30	90	88		4.06E-04	1.63E-04	2.44E-04	2.85E-04	8.13E-05	2.44E-04	2.37E-04	9.23E-04		
188-217	202	4.31E-06	300	50	2.16E-04	30	90	60	45	15	60	50		1.29E-04	3.88E-04	2.59E-04	1.94E-04	6.47E-05	2.59E-04	2.16E-04	1.14E-03		
217-247	232	6.53E-Ub	300	50	3.2/E-04	15	/5	60	45	30	135	60		9.80E-05	4.90E-04	0.00E+00	2.94E-04	1.96E-04	8.82E-04	3.27E-04	1.4/E-03		
247-277	202	9.41E-00	135	23	2.12E-04			60	30	15	30	34		0.00E+00	0.00E+00	5.05E-04	2.82E-04	1.41E-04	2.82E-04	2.12E-04	1.08E-03		
277-321	251	2.24E-05	215	52	1.19E-0		45	30	30	75	125	40		0.00E+00	1.01E-02	6.72E-04	6.73E-04	1.55E-04	2.02E-03	1 195-03	2 11E-02		
395-508	439	4.43E-05	180	30	1.33E-0	60	45	50	15	/3	90	45		2.66F-03	6.64F-04	0.00E+00	6.64E-04	0.00E+00	3.98F-03	1.13E-03	4 44F-03		
508-657	580	1.02F-04	90	15	1.53E-0	1	30		15		60	45		0.00E+00	3.06F-03	0.00E+00	0.00F+00	0.00E+00	6.13E-03	1.53E-03	5.97E-03		
657-808	734	2.07F-04	60	10	2.07E-0			60				60		0.00F+00	0.00F+00	1.24F-02	0.00F+00	0.00F+00	0.00F+00	2.07E-03	8.04F-03		
808-955	881	3.58E-04	15	2.5	8.95E-04	ł	15					15		0.00E+00	5.37E-03	0.00E+00	0.00E+00	0.00E+00	0.00E+00	8.95E-04	8.94E-03		
955-1103	1029	5.70E-04	C	0	0.00E+0)						0		0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	8.94E-03		
1103-1324	1176	8.51E-04	C	0	0.00E+0)						0		0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	8.94E-03		
1324-1500	1471	1.67E-03	45	7.5	1.25E-0	2			15	1	30	22.5		0.00E+00	0.00E+00	0.00E+00	2.50E-02	0.00E+00	5.00E-02	1.25E-02	2.14E-02		
	Total		10587	1765	2.14E-0	1650	1999	1726	1354	1171	2687	1973	Total	4.04E-03	1.20E-02	1.47E-02	2.80E-02	2.81E-03	6.70E-02	2.14E-02	2.41E-02	1.13E+02	
					2.14E+0	L				•			<160µm	7.53E-04	8.06E-04	5.55E-04	4.61E-04	4.52E-04	1.09E-03	6.86E-04	2.46E-04	3.59E+01	
					mg								<130µm	3.86E-04	4.62E-04	4.18E-04	2.54E-04	2.69E-04	6.07E-04	3.99E-04	1.31E-04	3.28E+01	
						-							<100µm	1.65E-04	1.71E-04	1.62E-04	1.38E-04	9.41E-05	2.23E-04	1.59E-04	4.23E-05	2.66E+01	
													<75µm	2.01E-05	3.12E-05	2.68E-05	1.27E-05	2.18E-05	3.52E-05	2.46E-05	8.12E-06	3.30E+01	
													mg <160µm	7.53E-01	8.06E-01	5.55E-01	4.61E-01	4.52E-01	1.09E+00	6.86E-01	. 2.46E-01	3.59E+01	
													mg <130µm	2.01E-02	3.12E-02	2.68E-02	1.27E-02	2.18E-02	3.52E-02	3.99E-01	1.31E-01	3.28E+01	
													mg, <100µm	1.65E-01	1.71E-01	1.62E-01	1.38E-01	9.41E-02	2.23E-01	1.59E-01	4.23E-02	2.66E+01	
													mg, <75µm	2.01E-02	3.12E-02	2.68E-02	1.27E-02	2.18E-02	3.52E-02	2.46E-02	8.12E-03	3.30E+01	
																				average of six	standard deviation of six		

Table 1

experiments deviation of six C.V.%

<Original data of "L & R - IMI" in Table 1 and calculation of mean mass by droplet size>

Table 1 Mass of exhaled droplets by droplet size during talking loudly counting from 1 to 100 in 100 seconds. (mg / 100 seconds)

C.Y. Chao et al.[23] Table 4 Estimated total expiratory droplet numbers produced during

Numbers in green boxes refer to data from the original paper.

						Cumulative	Cumulative	Cumulative
		x//		cummurative	Rolow this	mass ratio	mass ratio	mass ratio
cizo rango	cizo class	V(cm)	expiratory	values (am ³)	droplot size	below this	below this	below this
size range	d (um)	volume of	droplet	volume (cm)	Cumulativo	droplet size to	droplet size	droplet size to
(μπ)	α (μπ)	aropiet	numbers n	size	mass (mg)	cumulative	to cumulative	cumulative
		spriere			111033 (111 <u>6</u>)	mass below	mass below	mass below
						100 µm	75 µm	150 μm
2-4	3	1.41E-11	191	2.70E-09	2.70E-06	2.81E-05	5.77E-05	
4-8	6	1.13E-10	2972	3.36E-07	3.39E-04	3.52E-03	7.24E-03	
8-16	12	9.04E-10	1018	9.21E-07	1.26E-03	1.31E-02	2.69E-02	
16-24	20	4.19E-09	534	2.24E-06	3.49E-03	3.63E-02	7.47E-02	
24-32	28	1.15E-08	353	4.06E-06	7.55E-03	7.85E-02	1.61E-01	
32-40	36	2.44E-08	181	4.42E-06	1.20E-02	1.24E-01	2.56E-01	
40-50	45	4.77E-08	191	9.11E-06	2.11E-02	2.19E-01	4.51E-01	
50-75	62.5	1.28E-07	201	2.57E-05	4.68E-02	4.86E-01	1.00E+00	
75-100	87.5	3.51E-07	141	4.94E-05	9.62E-02	1.00E+00		1.99E-01
100-125	112.5	7.45E-07	191	1.42E-04	2.39E-01			4.93E-01
125-150	137.5	1.36E-06	181	2.46E-04	4.84E-01			1
150-200	175	2.80E-06	191	5.36E-04	1.02E+00			
200-250	225	5.96E-06	161	9.60E-04	1.98E+00			
250-500	375	2.76E-05	151	4.17E-03	6.14E+00			
500-1000	750	0.00022	60	1.32E-02	1.94E+01			
1000-2000	1500	0.00177	0	0.00E+00	1.94E+01			
	total	0.0020	6717	0.0194				
			19.39					
	total	cc, g	mg	1.94E+01				

reference

23. Chao CYH, Wan MP, Morawska L, Johnson GR, Ristovski ZD, Hargreaves M, Mengersen K, Corbett S, Li Y, Xie X, Katoshevski D (2009). Characterization of expiration air jets and droplet size distributions immediately at the mouth opening. J. Aerosol Sci 40(2), 122–133.

<Original data of Xie et al. in Table 1>

Table 1 Mass of exhaled droplets by droplet size during talking loudly counting from 1 to 100 in 100 seconds. (mg / 100 seconds)

<Outdoor diffusion calculataions>

The average breathing volume of Japanese adults

$C_{v} = \frac{N_{s}}{2\pi\sigma_{y}\sigma_{z}u} exp\left(-\frac{y^{2}}{2\sigma_{y}^{2}}\right) \left[exp\left\{-\frac{y^{2}}{2\sigma_{y}^{2}}\right)\right] \left[exp\left(-\frac{y^{2}}{2\sigma_{y}^{2}}\right)\right] \left[e$	$\left\frac{(z-h)^2}{2\sigma_z^2}\right\} + exp\left\{-\frac{(z+h)^2}{2\sigma_z^2}\right\}$

0 0 1												
idoor	Sitting posture	0.000167	m^3/s	table on the right	0.6	m3/h						
utdoor	standing	0.000253	m^3/s	table on the	0.91	m3/h						

https://unit.aist.go.jp/riss/crm/exposurefactors/documents/factor/body/breathing_rate.pdf

h = 1.5 m, z = 1.5 m, y = 0 m

C,/	Ν, :	normalized	number	concentration	of the virus	on the	plume centerline	
-----	------	------------	--------	---------------	--------------	--------	------------------	--

OMG volume source model U=1m/s

x(m)	C _v /N _s (m ⁻³)	C _{max} (m ⁻³)	C _{ave} (m ⁻³)	N _{in max} (h ⁻¹)	N _{in ave} (h ⁻¹)
2	4.35E-01	3396.7	3.4E+01	3.09E+03	3.09E+01
3	2.28E-01	1778.3	1.8E+01	1.62E+03	1.62E+01
5	9.26E-02	722.0	7.2E+00	6.57E+02	6.57E+00
10	3.01E-02	235.0	2.4E+00	2.14E+02	2.14E+00
50	2.21E-03	17.2	1.7E-01	1.57E+01	1.57E-01
100	5.95E-04	4.6	4.6E-02	4.22E+00	4.22E-02

OMG volume source model U=0.5m/s

z_o = 1m

C_v/N_s (m⁻³)

4.74E-01

2.35E-01

9.41E-02

3.35E-02

4.66E-04

x(m)	C _v /N _s (m ⁻³)	C _{max} (m ⁻³)	C _{ave} (m ⁻³)	N _{in max} (h ⁻¹)	N _{in ave} (h ⁻¹)
2	2.83E-01	2207.7	2.2E+01	2.01E+03	2.01E+01
3	1.38E-01	1073.6	1.1E+01	9.77E+02	9.77E+00
5	5.69E-02	443.8	4.4E+00	4.04E+02	4.04E+00
10	2.13E-02	166.4	1.7E+00	1.51E+02	1.51E+00
50	1.25E-03	9.8	9.8E-02	8.91E+00	8.91E-02
100	3.33E-04	2.6	2.6E-02	2.36E+00	2.36E-02

" (m⁻³)

3.70F+01

1.84E+01

7.34E+00

2.61E+00

1.43E-01

3.63E-02

"(h⁻¹)

3.36E+0

1.67E+0

6.68E+

2.38E+0

1.31E+0

3.30E+0

N _{in ave} (h⁻¹

3.36E+0

6.68E+I

2.38E+0

3.30E-

1 1.31E-0

1.67E+

U=1m/s

____(m⁻³)

3695

1836

734

261

14

4

0.8 0.3 2 3 1.2 0.5 2.0 0.8 3.8

32.3

oz(m)

dispersion parameters

10

50 17.0

100

(m

OMG volume source model

oy(m)

MG volum	e source m	odel	U=0.5m/s	
m)	σy(m)	σz(m)	$\sigma_{y} = [\sigma_{ya}^{2} + \sigma_{y0}^{2}]^{0.5}$	$\sigma_z = [\sigma_{za}^2 + \sigma_{z0}^2]^{0.5}$
2	2.0	0.51	2.0	0.5

1.6

8.2

16.4

 $\sigma_{v0} = 0.25 m, \sigma_{z0} = 0.25 m$

[σ_{ya}

0.9

1.3

2.0

3.8

17.0

32.3

 $[\sigma_{za}$

0.4

0.6

0.9

1.7

8.2

16.4

0.57

2.05

U=1m/s

 $\sigma_{v0}^{2}l^{0.5}$

J., =

3	2.8	0.77	2.9	0.81
5	4.6	1.3	4.6	1.3
10	8.7	2.6	8.7	2.6
50	39.0	12.8	39.0	12.8
100	74.3	25.7	74.3	25.7

OMI model z_o = 1m U=1m/s

		-0 -00	*		
x(m)	σya(m)	σza(m)	$\sigma_{y} = [\sigma_{ya}^{2} + \sigma_{y0}^{2}]^{0.5}$	$\sigma_{z} = + \sigma_{z0}^{2}]^{0.5}$	[σ_{za}^{2}
2	0.58	0.47	0.6		0.53
3	0.87	0.70	0.9		0.75
5	1.45	1.17	1.5		1.20
10	2.9	2.3	2.9		2.36
50	14.5	11.745	14.5		11.75
100	29	23 49	29.0		23 49

100 EPA Hiway-2 U=1m/s

10

50 1.84E-0

(m)

inveay	-2	0-111/3				
	x(m)	C _v /N _s (m ⁻³)	C _{max} (m ⁻³)	C _{ave} (m ⁻³)	N _{in max} (h ⁻¹)	N _{in ave} (h ⁻¹)
	2	8.40E-01	6552	6.55E+01	5.96E+03	5.96E+01
	3	4.87E-01	3801	3.80E+01	3.46E+03	3.46E+01
	5	2.18E-01	1698	1.70E+01	1.55E+03	1.55E+01
	10	6.91E-02	539	5.39E+00	4.90E+02	4.90E+00
	50	6.55E-03	51	5.11E-01	4.65E+01	4.65E-01
	100	1.95E-03	15	1.52E-01	1.39E+01	1.39E-01

EPA Hi	way-2	2		U=1m/s			
x(m)		σy(m)	σz(m)	$\sigma_{y} = + \sigma_{y0}^{2} [^{0.5}]$	$[\sigma_{\gamma a}^{2}]$	$\sigma_z = + \sigma_{z0}^{2} [^{0.5}]$	$[\sigma_{za}^{2}]$
	2	0.44	0.28		0.5		0.4
	3	0.64	0.41		0.7		0.5
	5	1.02	0.65		1.1		0.7
	10	1.93	1.23		1.9		1.3
	50	8.3	5.4		8.3		5.4
	100	15.5	10.3		15.5		10.3

reference

OML model

z_o=1m

35. Petersen WB, User's Guide for HIWAY-2, A Highway air pollution model, 1-69, US EPA, EPA-600/8-80-018 May 1980. 36. Berkowicz R, Olesen HR, Torp U (1986). The Danish Gaussian air pollution model (OML): Description, test and sensitivity analysis in view of regulatory applications, Air Pollution Modeling and its Application V., 453-481, De Wispelaere C, Schiermeier, FA, Gillani, NV (eds.), Springer, Boston MA.

37. Kono H, Ito S (1990). A micro-scale dispersion model for motor vehicle exhaust gas in urban areas-OMG volume-source dispersion model, Atmospheric Environment 24B(2), 243-251.

38. Kono H Ito S (1990). A comparison of concentration estimates by the OMG volume-source dispersion model with three line source dispersion models, Atmospheric Environment 24B(2), 253-260.

		average	maximum
	number of viruses in expiratory	10 ⁸ copies ml ⁻¹	10 ¹⁰ copies ml ⁻¹
	droplets	1.00E+08	1.00E+10
<mark>100µт</mark>	mass of expiratory droplets counting from 1 to 100 in 100 seconds (mg s ⁻¹)	7.8E-04	

virus release rate Ns (s⁻¹)

7.8E+01

7.8E+03

<Dispersion parameters in EPA HIWAY-2 model, OML model and OMG volume-source model>

-EPA Hiway-2

-OMG U=0.5m/s

<Indoor difussion calculation-1>

 Figure 3
 Calculated number of viruses inhaled from the nose and mouth for 1 hour indoors.

 5-3-1
 S3-1. Relationship between virus number concentration for each droplet size, Cr, c (n=10⁴ mL⁻¹) and ventilation rate.

	final									time decay of	room CO ₂ co concentratio V _{room} = 700 n	ncentration, Q = n $C_{m,d} = m_d / V_{ro}$ n ³ ,	ventiration v om [mg / m ²],	olume flow ra The suffix d is	te [m ³ s ⁻¹], Q the diameter	of droples.	Fres[s] irus number co	ncentration	C _v = N / V _{ra}	mass _{om} [m ⁻³],
initial	diameter		terminal		time ratio		initial		gravitational	aerosol.	CO2	(ppm)	450ppm	500ppm	600ppm	700ppm	800ppm	1000pp	1600ppm	3500ppm
diameter	df (µm)	evaporation	velocity	setting time	to 1 hour	d ₀ range	mass	initial mass ×TR	setting decay	exponetial	Q	m ³ s ⁻¹]	3	1.5	0.75	0.5	0.375	0.25	0.125	0.048
d _o (μm)	RH = 0 - 0.6	time (s)	vt (m s ⁻¹)	t =1.5/ vt (s)	(TR)	(µm)	(mg s ⁻¹)	(mg s *)	[s ⁻¹]	decay constant λ [s ⁻¹]	Q/	V _{room}	4.29E-03	2.14E-03	1.07E-03	7.14E-04	5.36E-04	3.57E-04	1.79E-04	6.91E-05
											Tr	es [s]	233	467	933	1,400	1,867	2,800	5,600	14,467
											Tr	es [h]	0.06	0.13	0.26	0.39	0.52	0.78	1.56	4.02
100	27	15-20	* 0.022	69	0.02	75-100	0.00049	9.44E-06	1.45E-02	1.69E-04		100um	3.72E-05	4.19E-05	4.48E-05	4.58E-05	4.63E-05	4.69E-05	4.74E-05	4.78E-05
70	18.9	10	0.0106858	140	0.04	50-75	0.00026	1.00E-05	7.12E-03	1.69E-04		70um	3.17E-05	3.89E-05	4.39E-05	4.58E-05	4.69E-05	4.80E-05	4.91E-05	4.98E-05
50	13.5	5	0.0054519	275	0.08	40-50	9.1E-05	6.96E-06	3.63E-03	1.69E-04		50µm	1.61E-05	2.19E-05	2.67E-05	2.88E-05	3.00E-05	3.13E-05	3.27E-05	3.36E-05
40	10.8	3.3	0.0034892	430	0.12	32-40	4.4E-05	5.28E-06	2.33E-03	1.69E-04	с.	40µm	9.31E-06	1.36E-05	1.77E-05	1.97E-05	2.08E-05	2.21E-05	2.36E-05	2.46E-05
30	8.1	1.6	0.0019627	764	0.21	24-32	4.1E-05	8.61E-06	1.31E-03	1.69E-04	Cin, a	30um	1.01E-05	1.60E-05	2.27E-05	2.64E-05	2.88E-05	3.16E-05	3.50E-05	3.75E-05
20	5.4	0.7	0.0008723	1,720	0.48	16-24	2.2E-05	1.07E-05	5.82E-04	1.69E-04	(mg m ⁻)	20µm	6.34E-06	1.10E-05	1.75E-05	2.18E-05	2.48E-05	2.88E-05	3.44E-05	3.90E-05
12	3.24	0.2	0.0002181	4,777	1.00	8-16	9.2E-06	9.21E-06	2.09E-04	1.69E-04		12µm	2.82E-06	5.22E-06	9.07E-06	1.20E-05	1.44E-05	1.79E-05	2.36E-05	2.94E-05
6	1.62	0.1	0.00013	19,106	1.00	< 8	3.4E-06	3.39E-06	5.23385E-05	1.69E-04		6µm	1.07E-06	2.05E-06	3.74E-06	5.17E-06	6.39E-06	8.36E-06	1.21E-05	1.67E-05
total						total	0.00096	6.36E-05				total	1.15E-04	1.51E-04	1.86E-04	2.06E-04	2.18E-04	2.35E-04	2.58E-04	2.78E-04
												n ₂ = 10 ¹⁰ cm ⁻³	1.15E+03	1.51E+03	1.86E+03	2.06E+03	2.18E+03	2.35E+03	2.58E+03	2.78E+03
											ς, (m ⁻)	n _o = 10 ⁸ cm ⁻³	1.15E+01	1.51E+01	1.86E+01	2.06E+01	2.18E+01	2.35E+01	2.58E+01	2.78E+01

V=700	m³	1000ppm	=30m ³ /h
CO ₂ (ppm)	C - C _{out}	Q [m ³ / (person • h)]	Q [m ³ /(pers on • s)]
450	50	360	0.1
500	100	180	0.05
600	200	90	0.025
700	300	60	0.01667
800	400	45	0.0125
1000	600	30	0.00833
1600	1200	15	0.00417
3500	3100	5.80645	0.00161

Room

* initial diameter ** Olibeira Fig. 7a (low protein, RH = 0.6)

The average breathing volume of Japanese adults $= 0.6m^{2}h^{4}$ Sitting posture

Ventilati	Vm ³ h ⁻¹ person ⁻¹	100µm	70µm	50µm	40μm	30µm	20µm	12µm	6µт	total
	360	3.7E-05	3.2E-05	1.6E-05	9.3E-06	1.0E-05	6.3E-06	2.8E-06	1.1E-06	1.1E-0
	180	4.2E-05	3.9E-05	2.2E-05	1.4E-05	1.6E-05	1.1E-05	5.2E-06	2.0E-06	1.5E-0
	90	4.5E-05	4.4E-05	2.7E-05	1.8E-05	2.3E-05	1.8E-05	9.1E-06	3.7E-06	1.9E-0
C _{m,d}	60	4.6E-05	4.6E-05	2.9E-05	2.0E-05	2.6E-05	2.2E-05	1.2E-05	5.2E-06	2.1E-0
(mg m ⁻²)	45	4.6E-05	4.7E-05	3.0E-05	2.1E-05	2.9E-05	2.5E-05	1.4E-05	6.4E-06	2.2E-0
	30	4.7E-05	4.8E-05	3.1E-05	2.2E-05	3.2E-05	2.9E-05	1.8E-05	8.4E-06	2.3E-0
	15	4.7E-05	4.9E-05	3.3E-05	2.4E-05	3.5E-05	3.4E-05	2.4E-05	1.2E-05	2.6E-0
	5.8	4.8E-05	5.0E-05	3.4E-05	2.5E-05	3.7E-05	3.9E-05	2.9E-05	1.7E-05	2.8E-0
Relation	ship between virus	count concentr	ation for each	initial drople	et size, C , , (n _o =	10 ⁸ mL ⁻¹) an	d ventilation	rate.		
	Vm ^a h ⁻¹ person ⁻¹	100µm	70um	50um						
				John	40µm	30µm	20µm	12µm	6µm	total
	360	3.72E+00	3.17E+00	1.61E+00	40μm 9.31E-01	30µm 1.01E+00	20μm 6.34E-01	12μm 2.82E-01	6µm 1.07E-01	total 1.15E+0
	360	3.72E+00 4.19E+00	3.17E+00 3.89E+00	1.61E+00 2.19E+00	40μm 9.31E-01 1.36E+00	30μm 1.01E+00 1.60E+00	20μm 6.34E-01 1.10E+00	12μm 2.82E-01 5.22E-01	6μm <u>1.07E-01</u> 2.05E-01	total 1.15E+0 1.51E+0
	360 180 90	3.72E+00 4.19E+00 4.48E+00	3.17E+00 3.89E+00 4.39E+00	1.61E+00 2.19E+00 2.67E+00	40μm 9.31E-01 1.36E+00 1.77E+00	30µm 1.01E+00 1.60E+00 2.27E+00	20µm 6.34E-01 1.10E+00 1.75E+00	12μm 2.82E-01 5.22E-01 9.07E-01	6μm 1.07E-01 2.05E-01 3.74E-01	total 1.15E+0 1.51E+0 1.86E+0
Cv,d	360 180 90 60	3.72E+00 4.19E+00 4.48E+00 4.58E+00	3.17E+00 3.89E+00 4.39E+00 4.58E+00	1.61E+00 2.19E+00 2.67E+00 2.88E+00	40μm 9.31E-01 1.36E+00 1.77E+00 1.97E+00	30µm 1.01E+00 1.60E+00 2.27E+00 2.64E+00	20µm 6.34E-01 1.10E+00 1.75E+00 2.18E+00	12μm 2.82E-01 5.22E-01 9.07E-01 1.20E+00	6μm <u>1.07E-01</u> <u>2.05E-01</u> <u>3.74E-01</u> <u>5.17E-01</u>	total 1.15E+0 1.51E+0 1.86E+0 2.06E+0
Cv,d (m ⁻³)	360 180 90 60 45	3.72E+00 4.19E+00 4.48E+00 4.58E+00 4.63E+00	3.17E+00 3.89E+00 4.39E+00 4.58E+00 4.69E+00	1.61E+00 2.19E+00 2.67E+00 2.88E+00 3.00E+00	40μm 9.31E-01 1.36E+00 1.77E+00 1.97E+00 2.08E+00	30µm 1.01E+00 1.60E+00 2.27E+00 2.64E+00 2.88E+00	20µm 6.34E-01 1.10E+00 1.75E+00 2.18E+00 2.48E+00	12μm 2.82E-01 5.22E-01 9.07E-01 1.20E+00 1.44E+00	6μm <u>1.07E-01</u> <u>2.05E-01</u> <u>3.74E-01</u> <u>5.17E-01</u> <u>6.39E-01</u>	total 1.15E+0 1.51E+0 2.06E+0 2.18E+0 2.18E+0
Cv,d (m ^{-a})	360 180 90 60 45 30	3.72E+00 4.19E+00 4.48E+00 4.58E+00 4.63E+00 4.69E+00	3.17E+00 3.89E+00 4.39E+00 4.58E+00 4.69E+00 4.80E+00	1.61E+00 2.19E+00 2.67E+00 2.88E+00 3.00E+00 3.13E+00	40μm 9.31E-01 1.36E+00 1.77E+00 1.97E+00 2.08E+00 2.21E+00	30µm 1.01E+00 1.60E+00 2.27E+00 2.64E+00 2.88E+00 3.16E+00	20µm 6.34E-01 1.10E+00 1.75E+00 2.18E+00 2.48E+00 2.88E+00	12µm 2.82E-01 5.22E-01 9.07E-01 1.20E+00 1.44E+00 1.79E+00	6μm 1.07E-01 2.05E-01 3.74E-01 5.17E-01 6.39E-01 8.36E-01	total 1.15E+0 1.51E+0 1.86E+0 2.06E+0 2.18E+0 2.35E+0
Cv,d (m ⁻¹)	360 180 90 60 45 30 15	3.72E+00 4.19E+00 4.48E+00 4.58E+00 4.63E+00 4.63E+00 4.69E+00 4.74E+00	3.17E+00 3.89E+00 4.39E+00 4.58E+00 4.69E+00 4.80E+00 4.91E+00	1.61E+00 2.19E+00 2.67E+00 3.00E+00 3.13E+00 3.27E+00	40µm 9.31E-01 1.36E+00 1.77E+00 1.97E+00 2.08E+00 2.21E+00 2.36E+00	30µm 1.01E+00 1.60E+00 2.27E+00 2.64E+00 2.88E+00 3.16E+00 3.50E+00	20µm 6.34E-01 1.10E+00 1.75E+00 2.18E+00 2.48E+00 2.88E+00 3.44E+00	12µm 2.82E-01 5.22E-01 9.07E-01 1.20E+00 1.44E+00 1.79E+00 2.36E+00	6μm <u>1.07E-01</u> 2.05E-01 3.74E-01 5.17E-01 6.39E-01 8.36E-01 1.21E+00	total 1.15E+0 1.51E+0 1.86E+0 2.06E+0 2.18E+0 2.35E+0 2.58E+0

S3-1. Relationship between virus number concentration for each droplet size, $C_{+,z}$ ($n_c=10^8$ mL⁻¹) and ventilation rate. The droplet size d_g is the initial one before shrinkage.

 $Table \qquad \qquad Parameter of three removal processes (ventilation [Q/V_{nom}], gravitational settling decay [\kappa], inactivation of virus [\lambda])$

gravitational setting decay rate x = 1 / t	time decay of virus in aerosol, exponetial decay	Q/Vroom										
[s ⁻]	constant λ [s ⁻¹]	450ppm	500ppm	600ppm	700ppm	800ppm	1000pp	1600ppm	3500ppm			
1.5.E-02	1.69E-04	4.3.E-03	2.1.E-03	1.1.E-03	7.1.E-04	5.4.E-04	3.57E-04	1.79E-04	6.91E-05			
7.1.E-03	1.69E-04	4.3.E-03	2.1.E-03	1.1.E-03	7.1.E-04	5.4.E-04	3.57E-04	1.79E-04	6.91E-05			
3.6.E-03	1.69E-04	4.3.E-03	2.1.E-03	1.1.E-03	7.1.E-04	5.4.E-04	3.57E-04	1.79E-04	6.91E-05			
2.3.E-03	1.69E-04	4.3.E-03	2.1.E-03	1.1.E-03	7.1.E-04	5.4.E-04	3.57E-04	1.79E-04	6.91E-05			
1.3.E-03	1.69E-04	4.3.E-03	2.1.E-03	1.1.E-03	7.1.E-04	5.4.E-04	3.57E-04	1.79E-04	6.91E-05			
5.8.E-04	1.69E-04	4.3.E-03	2.1.E-03	1.1.E-03	7.1.E-04	5.4.E-04	3.57E-04	1.79E-04	6.91E-05			
2.1.E-04	1.69E-04	4.3.E-03	2.1.E-03	1.1.E-03	7.1.E-04	5.4.E-04	3.57E-04	1.79E-04	6.91E-05			
5.2.E-05	1.69E-04	4.3.E-03	2.1.E-03	1.1.E-03	7.1.E-04	5.4.E-04	3.57E-04	1.79E-04	6.91E-05			

Figure 3 Calculated number of viruses inhaled from the nose and mouth for 1 hour indoors, Nia (h⁻¹)

<Indoor difussion calculation-2>

S3-2. Relationship between droplet mass concentration for each initial size and ventilation rate. ($\lambda = 0$)

	final initial mass				$\label{eq:constraint} \begin{array}{c} rom CO_2 \mbox{ concentration}, Q = \mbox{ ventration volume flow rate } [m^3_s ^1], Q / V_{noom} [s^1], \mbox{ Tres}[s] \\ mass \mbox{ concentration} C_{max} = m_d / V_{noom} [mg / m^3], \mbox{ The suffix } d \mbox{ is the diameter of droples}. \mbox{ virus count concentration} C_v = N / V_v \\ f [m^3_1, - 300 m_i^3], T_v = N / V_v \\ f m_i = N m_i^3 m_i^3 \mbo$									= N / V _{room}							
initial	final	evaporatio	terminal		time ratio		released in		gravitational	virus in	CO2	(ppm)	450ppm	500ppm	600ppm	700ppm	800ppm	1000pp	1600ppm	3500ppm	
diameter	diameter df	n time (s)	velocity	setting time	to 1 hour	d _o range	conversation	initial mass × I R	setting decay	aerosol,	Q	[m ³ s ⁻¹]	3	1.5	0.75	0.5	0.375	0.25	0.125	0.048	
d _o (μm)	(µm) кн = 0 - 0.6	••	vt (m s ⁻¹)	t =1.5/ Vt (S)	(TR)	(µm)	, m _{d0, gen} (mg s ⁻¹)	(mg s`*) r [[s ⁻¹]	[s ⁻¹]	l decay constant	Q	(V _{room}	4.29E-03	2.14E-03	1.07E-03	7.14E-04	5.36E-04	3.57E-04	1.79E-04	6.91E-05
										v [s]	Tr	es [s]	233	467	933	1,400	1,867	2,800	5,600	14,467	
											Tr	es [h]	0.06	0.13	0.26	0.39	0.52	0.78	1.56	4.02	
100	27	15-20	* 0.022	69	0.02	75-100	0.00049	9.44E-06	1.45E-02	0.00E+00		100µm	3.75E-05	4.23E-05	4.52E-05	4.63E-05	4.68E-05	4.74E-05	4.80E-05	4.83E-05	
70	18.9	10	0.0106858	140	0.04	50-75	0.00026	1.00E-05	7.12E-03	0.00E+00		70µm	3.22E-05	3.96E-05	4.48E-05	4.68E-05	4.79E-05	4.90E-05	5.02E-05	5.10E-05	
50	13.5	5	0.0054519	275	0.08	40-50	0.000091	6.96E-06	3.63E-03	0.00E+00		50µm	1.64E-05	2.25E-05	2.77E-05	2.99E-05	3.12E-05	3.26E-05	3.41E-05	3.51E-05	
40	10.8	3.3	0.0034892	430	0.12	32-40	0.000044	5.28E-06	2.33E-03	0.00E+00	Cert	40µm	9.55E-06	1.41E-05	1.86E-05	2.08E-05	2.21E-05	2.35E-05	2.52E-05	2.64E-05	
30	8.1	1.6	0.0019627	764	0.21	24-32	0.000041	8.61E-06	1.31E-03	0.00E+00	(mg/m ³)	30µm	1.04E-05	1.68E-05	2.43E-05	2.86E-05	3.14E-05	3.48E-05	3.90E-05	4.21E-05	
20	5.4	0.7	0.0008723	1,720	0.48	16-24	0.000022	1.07E-05	5.82E-04	0.00E+00	(ing/iii)	20µm	6.56E-06	1.17E-05	1.93E-05	2.46E-05	2.86E-05	3.40E-05	4.20E-05	4.91E-05	
12	3.24	0.2	0.0002181	4,777	1.00	8-16	0.0000092	9.21E-06	2.09E-04	0.00E+00		12µm	2.93E-06	5.59E-06	1.03E-05	1.42E-05	1.77E-05	2.32E-05	3.39E-05	4.72E-05	
6	1.62	0.1	0.00013	19,106	1.00	< 8	0.0000034	3.39E-06	5.23E-05	0.00E+00		6µm	1.12E-06	2.20E-06	4.31E-06	6.31E-06	8.23E-06	1.18E-05	2.10E-05	3.98E-05	
total						total	0.00096	6.36E-05				total	1.17E-04	1.55E-04	1.94E-04	2.18E-04	2.34E-04	2.56E-04	2.93E-04	3.39E-04	
														-	-		-				
														-	_		_				

	Room					
V _{room} =700	m³	1000ppm=30m ³ /h				
		Q [m ³ /	Q			
CO2(ppm	C-Cout	(person	[m ³ /(pers			
		• h)]	on • s)]			
450	50	360	0.1			
500	100	180	0.05			
600	200	90	0.025			
700	300	60	0.016667			
800	400	45	0.0125			
1000	600	30	0.008333			
1600	1200	15	0.004167			
3500	3100	5 806452	0.001613			

initial diameter
 Olibeira Fig. 7a (low protein, RH = 0.6)

Relationship b	elationship hetween droplet mass concentration for each initial size and ventilation rate. ($\lambda = 0$)											
	Vm ³ h ⁻¹ person ⁻¹	100µm	70µm	50µm	40µm	30µm	20µm	12µm	6µm	total		
	360	3.8E-05	3.2E-05	1.6E-05	9.5E-06	1.0E-05	6.6E-06	2.9E-06	1.1E-06	1.2E-04		
	180	4.2E-05	4.0E-05	2.3E-05	1.4E-05	1.7E-05	1.2E-05	5.6E-06	2.2E-06	1.5E-04		
	90	4.5E-05	4.5E-05	2.8E-05	1.9E-05	2.4E-05	1.9E-05	1.0E-05	4.3E-06	1.9E-04		
C _{m,d}	60	4.6E-05	4.7E-05	3.0E-05	2.1E-05	2.9E-05	2.5E-05	1.4E-05	6.3E-06	2.2E-04		
(mg m ⁻³)	45	4.7E-05	4.8E-05	3.1E-05	2.2E-05	3.1E-05	2.9E-05	1.8E-05	8.2E-06	2.3E-04		
-	30	4.7E-05	4.9E-05	3.3E-05	2.4E-05	3.5E-05	3.4E-05	2.3E-05	1.2E-05	2.6E-04		
	15	4.8E-05	5.0E-05	3.4E-05	2.5E-05	3.9E-05	4.2E-05	3.4E-05	2.1E-05	2.9E-04		
	5.8	4.8E-05	5.1E-05	3.5E-05	2.6E-05	4.2E-05	4.9E-05	4.7E-05	4.0E-05	3.4E-04		

Table Parameter of three removal precesses (ventilation [Q/V_{room}], gravitational settting decay [κ], inactivation of virus [λ])

initial diameter d ₀ (μm)	final diameter df (μm) RH = 0 - 0.6	gravitationa l setting decay rate к = 1/t [s-1]	time decay of virus in aerosol, exponetial decay constant λ [s ⁻¹]	450ppm	500ppm	600ppm	700ppm	Q/Vroom 800nnm	1000იი	1600ppm	3500ppm
100	27	1.5.E-02	0.00E+00	4.3.E-03	2.1.E-03	1.1.E-03	7.1.E-04	5.4.E-04	3.57E-04	1.79E-04	6.91E-05
70	18.9	7.1.E-03	0.00E+00	4.3.E-03	2.1.E-03	1.1.E-03	7.1.E-04	5.4.E-04	3.57E-04	1.79E-04	6.91E-05
50	13.5	3.6.E-03	0.00E+00	4.3.E-03	2.1.E-03	1.1.E-03	7.1.E-04	5.4.E-04	3.57E-04	1.79E-04	6.91E-05
40	10.8	2.3.E-03	0.00E+00	4.3.E-03	2.1.E-03	1.1.E-03	7.1.E-04	5.4.E-04	3.57E-04	1.79E-04	6.91E-05
30	8.1	1.3.E-03	0.00E+00	4.3.E-03	2.1.E-03	1.1.E-03	7.1.E-04	5.4.E-04	3.57E-04	1.79E-04	6.91E-05
20	5.4	5.8.E-04	0.00E+00	4.3.E-03	2.1.E-03	1.1.E-03	7.1.E-04	5.4.E-04	3.57E-04	1.79E-04	6.91E-05
12	3.24	2.1.E-04	0.00E+00	4.3.E-03	2.1.E-03	1.1.E-03	7.1.E-04	5.4.E-04	3.57E-04	1.79E-04	6.91E-05
6	1.62	5.2.E-05	0.00E+00	4.3.E-03	2.1.E-03	1.1.E-03	7.1.E-04	5.4.E-04	3.57E-04	1.79E-04	6.91E-05

Relationship between droplet mass concentration for each initial size and ventilation rate. (λ =0) The droplet size d₀ is the initial one before shrinkage. S3-2.

<Virus decay due to the inactivation>

t(min)	t(h)	N/NO	$\frac{1}{N_0} \int_0^t N(t) dt$
0	0	1.00	
6	0.1	0.94	0.97
12	0.2	0.88	0.94
18	0.3	0.83	0.91
24	0.4	0.78	0.89
30	0.5	0.74	0.86
36	0.6	0.69	0.84
42	0.7	0.65	0.81
48	0.8	0.61	0.79
54	0.9	0.58	0.77
60	1	0.54	0.75
66	1.1	0.51	
68	1.1	0.50	

[32] Neeltje van Doremalen et al., 2020. Aerosol and Surface Stability of SARS-CoV-2 as Compared with SARS-CoV-1

Virus decay due to the inactivation

<Comparison of Pöhlker mdel and Kono model>

Pöhlker 's a multimode lognormal fit function for speaking, O₁ mode + O₂ mode

 $\dot{V} = 194 \ (cm^3 s^{-1})$

diameter of droplets	Volume concentration distribution of droplets			Volume concentration	Cumulative concentration (µm3/cm3)	Cumulative concentration (cm3/cm3)	Volume	emission rate		
D(µm)	$dCv/d(\log d) = fv(D)$ $[\mu m^3 cm^{-3} / \mu m]$	log D (µm)	d(log D) (µm)	Cv (µm ³ cm ⁻³)	$\SigmaCv~(\mu m^3/cm^3)$	$\Sigma \mathrm{Cv} (\mathrm{cm}^3/\mathrm{cm}^3)$	$Qv \ (cm^3 s^{\text{-}1})$	$Qv (\mu m^3 h^{-1})$	Qv (Pohlker) / Qv (Kono)	
5.8	2.25.E+00	0.763428	0.181055	4.08.E-01	4.08.E-01					
9	1.07.E+01	0.944483	0.172789	1.84.E+00	2.25.E+00	2.25.E-12				
13	3.57.E+01	1.117271	0.179394	6.40.E+00	8.65.E+00	8.65.E-12				
20	1.24.E+02	1.296665	0.174627	2.16.E+01	3.03.E+01	3.03.E-11				
30	6.49.E+02	1.471292	0.176091	1.14.E+02	1.45.E+02	1.45.E-10				
44	4.28.E+03	1.647383	0.176547	7.55.E+02	8.99.E+02	8.99.E-10				
67	2.30.E+04	1.82393	0.17607	4.05.E+03	4.95.E+03	4.95.E-09				Kono
100	8.89.E+04	2	0.176091	1.56.E+04	2.06.E+04	2.06.E-08	4.00.E-06		5.1	7.8E-07 g/s
150	2.43.E+05	2.176091	0.176091	4.28.E+04	6.34.E+04	6.34.E-08	1.23.E-05		5.3	2.3.E-06 g/s
225	4.69.E+05	2.352183	0.176091	8.25.E+04	1.46.E+05	1.46.E-07				
338	6.38.E+05	2.528274	0.176091	1.12.E+05	2.58.E+05	2.58.E-07				
506	6.11.E+05	2.704365	0.176091	1.08.E+05	3.66.E+05	3.66.E-07				
759	4.13.E+05	2.880456	0.176091	7.28.E+04	4.39.E+05	4.39.E-07				
1139	1.97.E+05	3.056548	0.176091	3.47.E+04	4.73.E+05	4.73.E-07				
1709	6.62.E+04	3.232639	0.176091	1.17.E+04	4.85.E+05	4.85.E-07				
2563	1.57.E+04	3.40873	0.176091	2.76.E+03	4.88.E+05	4.88.E-07	9.5.E-05	3.4.E+11		
3844	2.62.E+03	3.584821								

Pölker et al. [42]

Pöhlker 's a multimode lognormal fit function for speaking, O1 mode+ O2 mode

$$V_p = \frac{\pi}{6} D^3 \sum_{l=1}^{2} \left\{ A_l Exp \left[-\left(\frac{ln \left(D_{/D_l} \right)}{\sigma_l} \right)^2 \right] \right\} \qquad \qquad C_V = Vp / Vair \qquad \qquad Vair = 200 \text{ cm}^3 \text{ s}^{-1} \qquad Q_v = C_v \times \dot{V} \qquad \dot{V} = V_{air} \times f$$

TABLE VI Average fit parameters for breathing (see Fig. 11), speaking and singing (see Fig. 13) as well as coughing (see Fig. 15) size distributions in dN/dlogD representation. Table specifies the mode-specific parameters: height (A_i) , position (D_i) , width (σ_i) , integral particle number and volume concentrations (C_N, C_V) as well as emission rates (Q_N, Q_V) . Q_N and Q_V were obtained from C_X and C_V by applying Eq. 6 with q from Table I.

Respiratory activity	Mode	A_i [cm ⁻³]	D _i [μm]	$\sigma_{\mathbf{i}}$	C_N $[cm^{-3}]$	C_V [µm ³ cm ⁻³]	$Q_{\mathbf{N}}$ [h ⁻¹]	Q_V $[\mu m^3 h^{-1}]$
Tidal breathe	B1	7.7	0.07	0.90	5.33	$5.93 \cdot 10^{-3}$	$1.92\cdot 10^6$	$2.13 \cdot 10^3$
	B2	1.1	0.30	0.90	0.76	$6.67 \cdot 10^{-2}$	$2.74\cdot 10^5$	$2.40\cdot 10^4$
Breathe with airway closure	B1 B2	$\begin{array}{c} 2.00 \cdot 10^{1} \\ 2.60 \cdot 10^{1} \end{array}$	0.07 0.30	0.90 0.90	$\begin{array}{c} 1.39\cdot10^1 \\ 1.80\cdot10^1 \end{array}$	$1.54 \cdot 10^{-2}$ 1.57	$\begin{array}{c} 4.99\cdot10^6 \\ 6.48\cdot10^3 \end{array}$	$5.54\cdot 10^3$ $5.67\cdot 10^5$
Speak	B1 B2 LT	9.8 1.4 1.7	$0.07 \\ 0.3 \\ 1$	0.90 0.90 0.90	6.79 0.97 1.18	$7.54 \cdot 10^{-5}$ $8.48 \cdot 10^{-2}$ 3.81	$\begin{array}{c} 4.75 \cdot 10^6 \\ 6.79 \cdot 10^5 \\ 8.24 \cdot 10^5 \end{array}$	$5.28 \cdot 10^3 \\ 5.94 \cdot 10^4 \\ 2.67 \cdot 10^6$
	O1 O2	$0.03 \\ 0.17$	$1.00 \cdot 10^{1}$ $9.60 \cdot 10^{1}$	$0.98 \\ 0.97$	$2.26 \cdot 10^{-2}$ 0.127	$1.03 \cdot 10^{-2}$ $4.46 \cdot 10^{5}$	$1.58 \cdot 10^4$ $8.88 \cdot 10^4$	$7.20 \cdot 10^7$ $3.12 \cdot 10^1$

Figure, Pöhlker 's a multimode lognormal fit function for speaking, O1 mode + O2 mode

Pölker et al. [42]

TABLE I Parameters of different respiratory activities/events, summarized from previous studies. The following events are specified: breathe (event = one exhalation), speak (event = one spoken word of average length), cough (event = one cough), and sneeze (event = one sneeze). Relevant event-specific parameters are the emitted air volume (V_{air}), duration (Δt), and peak flow rate (q) per event. Relevant event-specific parameters are the event rate (f), which is the number of event repetitions per hour, and the average air emission rate (\dot{t}), obtained through $\dot{t} = V_{air}$. (Totrot and Derrickson, 2017). For speaking, two (short) words spoken per second were assumed to obtain a speaking-related f, according to Johnson et al. (2011). Several parameters show an inherently high inter- and intrasubject variability, which is reflected in the table as typical parameters. The values in brackets show the characteristic values used in calculations in this review article (e.g., Sect. III.C and Sect. III.D). Values represent the average of male and female adults. Values mostly represent healthy subjects – only for the cough rate, healthy and diseased subjects are distinguished.

	Propert	ies per respiratory	event	Time-averaged pr	operties
	Exhaled volume V _{air} [L]	Duration Δt [s]	Peak flow rate $q [L s^{-1}]$	Event rate $f [h^{-1}]$	Air emission rate $\dot{V} [L h^{-1}]$
Tidal breath	$0.4 - 1.7^{b,h,k,n}$ $[0.5]^{c,g,p}$	$1.5 - 2.5^{f,j}$ [2] ^c	$0.2-0.7^{i,j,k}$	$600 - 1200^{b,h,n}$ [720] ^{c,g,p}	$360 - 800^{\mathrm{g,j,l}}$ [360] *
Spoken word	[0.1] *	0.51	$0.3 - 1.6^{a,e,j}$	$[7200]^1$	$450 - 700^{j,1}$ [700] ^j
Cough	$0.3 - 4^{b,c,d,i,l,m,p,v}$ [1.5] ^r	$0.2 - 1^{b,c,i,q,v}$	$0.2 - 15^{b,i,j,m,r,w}$	healthy: $0 - 4^{s,t,x}$ healthy smoker: $0 - 8^{t,x}$ diseased: $0 - 140^{o,p,s,t,u,x}$ [10] ^c	[15] *
Sneeze	$1 - 4^{c}$ [2] ^p	$0.1-0.2^{\rm \ c}$	10 - 20*	$5-30^{\ c}\ [10]^{\ \dagger}$	[20]*

<Johnson, Morawska et al. BLO tri-modal model, speaking [22]>

Expiratory flow rate = $210 \text{ cm}^3 \text{ s}^{-1}$ [5]

										-	
diameter of droplets	Number concentration of droplets	Volume concentration distribution of droplets			Volume concentration	Cumulative concentration (µm3/cm3)	Cumulative concentratio n (cm3/cm3)	Volume e	mission rate		
D(µm)	dCn / d log D	$dCv/d(\log d)$ = fv(D) [μ m ³ cm ⁻³ / μ m]	log D (μm)	d(log D) (µm)	Cv (µm ³ cm ⁻ 3)	ΣCv ($\mu m^3/cm^3$)	ΣCv (cm ³ /cm ³)	Qv (cm ³ s ⁻¹)	$Qv \ (\mu m^3 h^{-1})$	Qv (Johnson) / Qv (Kono)	
5.8	2.72.E-02	2.78.E+00	0.763428	0.181055	5.04.E-01	5.04.E-01					
9	4.64.E-03	1.65.E+00	0.944483	0.172789	2.86.E-01	7.90.E-01	7.90.E-13				
13	4.56.E-04	5.37.E-01	1.117271	0.179394	9.62.E-02	8.86.E-01	8.86.E-13				
20	2.74.E-05	1.11.E-01	1.296665	0.174627	1.94.E-02	9.05.E-01	9.05.E-13				
30	5.01.E-05	6.79.E-01	1.471292	0.176091	1.20.E-01	1.02.E+00	1.02.E-12				
44	2.56.E-04	1.17.E+01	1.647383	0.176547	2.07.E+00	3.09.E+00	3.09.E-12				
67	8.19.E-04	1.27.E+02	1.82393	0.17607	2.24.E+01	2.55.E+01	2.55.E-11				
100	1.62.E-03	8.47.E+02	2	0.176091	1.49.E+02	1.75.E+02	1.75.E-10	3.67.E-08		0.047	7.8E-07 g/s
150	1.98.E-03	3.49.E+03	2.176091	0.176091	6.15.E+02	7.89.E+02	7.89.E-10				
225	1.49.E-03	8.90.E+03	2.352183	0.176091	1.57.E+03	2.36.E+03	2.36.E-09				
338	6.98.E-04	1.40.E+04	2.528274	0.176091	2.47.E+03	4.83.E+03	4.83.E-09				
506	2.02.E-04	1.37.E+04	2.704365	0.176091	2.41.E+03	7.24.E+03	7.24.E-09				
759	3.61.E-05	8.26.E+03	2.880456	0.176091	1.46.E+03	8.69.E+03	8.69.E-09				
1139	3.99.E-06	3.08.E+03	3.056548	0.176091	5.43.E+02	9.24.E+03	9.24.E-09	1.94.E-06			1
1709	2.73.E-07	7.12.E+02	3.232639	0.176091	1.25.E+02	9.36.E+03	9.36.E-09				1
2563	1.15.E-08	1.02.E+02	3.40873	0.176091	1.79.E+01	9.38.E+03	9.38.E-09	2.0.E-06	7.1.E+09		1
3844	3.02.E-10	8.98.E+00	3.584821								1

BLO tri-modal model:

$\frac{\mathrm{dCn}}{\mathrm{dLog}D} = \ln(10) \times \sum_{n=1}^{3} \frac{\mathrm{dCn}}{\mathrm{dLog}D}$	$\left(\frac{Cn_i}{\sqrt{2\pi}ln(CSD_i)}\right)exp($	$\left(-\frac{(\ln D - \ln CMD_i)^2}{2(\ln CSD_i)^2}\right)$, $0.8 \mu m \le D \le 1000 \mu m$	(1
$d \log D$ $i=1$	$\sqrt{2\pi \ln(GSD_i)}$	$(2(\ln GSD_i)^{-1})$		

Table 2

Model parameters for aerosols produced by healthy volunteers during speaking and coughing. DF=APS sample dilution factor. EF=APS sample evaporative diameter shrinkage factor. SF=DDA droplet spread factor.

i	1		2		3 (O mode)		
	(B mode)		(L mode)	 1 1 			
	Mean	SE (%)	Mean	SE (%)	Mean	SE (%)	
Speaking							
$Cn_i (cm^{-3})$	0.015 × DF	16	0.019 × DF	15	0.00126	0.8	
CMD; (µm)	0.807/EF	0.45	1.2/EF	8.1	217/SF	0.5	
GSDi	1.30	1.3	1.66	3.1	1.795	0.5	
Coughing							
$Cn_i (cm^{-3})$	0.021 × DF	9	0.033 × DF	8	0.01596	0.6	
CMD _i (µm)	0.784/EF	0.61	0.8/EF	2.9	185/SF	0.4	
GSD;	1.25	0.8	1.68	1.5	1.837	0.4	

Table 3

Parameter correction factors: DF=APS sample dilu-tion. EF=APS sample evaporative diameter shrinkage. SF=DDA droplet diameter spreading on slide surface.

Correction	Speaking	Coughing
DF (APS)	3.6	4.3
EF (APS)	0.5	0.5
SF (DDI)	1.5	1.5

Johnson, Morawska et al. BLO tri-modal model, speaking Volume concentration distribution of droplets

Johnson, Morawska et al. BLO tri-modal model, speaking Number concentration of droplets